Горячая линия
06 июля 2022 активны на платформе
38 371 -53
Преподаватель
322 194 -216
Студента
99+
Нет новых уведомлений
Высокий уровень вовлечения представителей целевой аудитории является четким
12 декабря 2020
Высокий уровень вовлечения представителей целевой аудитории является четким
12 декабря 2020
Высокий уровень вовлечения представителей целевой аудитории является четким
12 декабря 2020

Корзина

Позиций
Стоимость 0
Перейти в корзину
Войдите или зарегистрируйтесь, чтобы получить все преимущества платформы Юрайт!

Методы математической физики. Лекционный курс

  • Скопировать в буфер библиографическое описание
    Палин, В. В.  Методы математической физики. Лекционный курс : учебное пособие для вузов / В. В. Палин, Е. В. Радкевич. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2022. — 222 с. — (Высшее образование). — ISBN 978-5-534-03589-6. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/492363 (дата обращения: 06.07.2022).
  • Добавить в избранное
2-е изд., испр. и доп. Учебное пособие для вузов
Обложка книги МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. ЛЕКЦИОННЫЙ КУРС Палин В. В., Радкевич Е. В. Учебное пособие Ознакомиться
2022
Страниц 222
Обложка Твердая
Гриф Гриф УМО ВО
ISBN 978-5-534-03589-6
Библиографическое описание
Палин, В. В.  Методы математической физики. Лекционный курс : учебное пособие для вузов / В. В. Палин, Е. В. Радкевич. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2022. — 222 с. — (Высшее образование). — ISBN 978-5-534-03589-6. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/492363 (дата обращения: 06.07.2022).
Показать все

Учебное пособие ориентировано на изучение современного математического аппарата, используемого для моделирования физических процессов или визуализации их основных свойств. Курс лекций отличает рассмотрение широкого класса физических задач, для решения которых применимы те или иные задачи для уравнений математической физики. В нем приводятся примеры дифференциальных уравнений, решения которых допускают возникновение катастроф при классическом понимании решения, и проведен анализ образования разрывов решения или его производных. Рассмотрены проблемы неоднозначности выбора определения обобщенного решения и процедуры выделения однозначного продолжения обобщенного решения через момент возникновения особенностей. Проведен анализ различных взаимосвязей между разными типами дифференциальных уравнений и возможности использования одних уравнений при исследовании асимптотических свойств других. Также представлен классический курс математической физики, в который включены изучение системы уравнений Максвелла, основы теории полугрупп и теорема Хилле — Иосиды.